Course Title: Physics-3 Course Code: 209Phys-3 **Program: Bachelor in Computer Engineering** **Department: Department of Physics** **College: College of Science** **Institution: King Khalid University** Version: TP-153-2024 Last Revision Date: 22/10/2024 | Table of Contents | | |--|---| | A. General information about the course: | 3 | | B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment | | | Methods | 4 | | C. Course Content | 5 | | D. Students Assessment Activities | 7 | | E. Learning Resources and Facilities | 7 | | F. Assessment of Course Quality | 8 | | G. Specification Approval | 8 | ## A. General information about the course: | 1. Course Identif | Ication | | | | | |---|---|---|--------------------------------------|---|---| | 1. Credit hours: | 3 | | | | | | 3(2+1) hrs | | | | | | | 2. Course type | | | | | | | A. University | ☐ College | ☐ Department | □ Track | ☐ Others | | | B. Required | | ☐ Electiv | | | | | 3. Level/year at | which this cours | se is offered: (Level | 6 / Third Y | 'ear) | | | 4. Course Gene | al Description: | | | | | | measurement, and frequency, and pha and digital measurement | measurement technise using different too
ing instruments, and
conductor devices u | lefinitions of measurement
niques for AC and DC
ols. The course covers B
d cathode ray oscillosed
using diodes and transist | C- current a ridge methoope. This co | nd voltage, resistance
od measurement, analo
urse will introduce th | g | | | | | | | | | 5. Pre-requirem | ents for this cou | rse (if any): | | | | | 109Phys-2 | ents for this cou | | | | | | 109Phys-2 | | | | | | | 109Phys-2 | ents for this cou | | | | | | 109Phys-2 6. Co-requisites | ents for this cou
for this course (if | | | | | | 109Phys-2 6. Co-requisites None 7. Course Main | ents for this cou
for this course (if | | | | | **** 2. Teaching mode (mark all that apply) | No | Mode of Instruction | Contact Hours | Percentage | |----|---|-----------------|------------| | 1 | Traditional classroom | 4 (2+2)hr/ week | 100% | | 2 | E-learning | | | | | Hybrid | | | | 3 | Traditional classroom | | | | | E-learning | | | | 4 | Distance learning | | | ### **3. Contact Hours** (based on the academic semester) | No | Activity | Contact Hours | |-------|-------------------|---------------| | 1. | Lectures | 32 | | 2. | Laboratory/Studio | 32 | | 3. | Field | | | 4. | Tutorial | | | 5. | Others (specify) | | | Total | | 64 | # B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | Code | Course Learning
Outcomes | Code of PLOs aligned with the program | Teaching
Strategies | Assessment
Methods | |------|---|---------------------------------------|---|--| | 1.0 | Knowledge and under | rstanding | | | | 1.1 | Define the fundamentals of measurement, and different kinds of errors. | K 1 | Class lectures, discussion, problem-solving | Examinations,
Assignments,
Quizzes | | 1.2 | Explain the procedures for measuring alternating and direct current, voltage, resistance, frequency, and phase using different instruments. | XZ | Lectures and Lab demonstrations | Examinations,
Assignments,
Quizzes | | 1.3 | | 11.31 | ** \ | | | 2.0 | Skills | | → | | | 2.1 | Demonstrate the measurement accuracy | SI | Lectures, Tutorials | Examinations, Assignments, | | Code | Course Learning
Outcomes | Code of PLOs aligned with the program | Teaching
Strategies | Assessment
Methods | |------|--|---------------------------------------|--|--| | | and identify the potential sources of error in the measurement. | | | | | 2.2 | Use equipment of Lab such as multimeter, oscilloscope, diodes, and transistors necessary for minor projects. | S2 | Lab
demonstrations | Lab Report, Lab Activity, Lab Homework, Lab Examinations | | 2.3 | Show written communication skills through reports about measurements. | S3 | Discussions,
Demonstration,
Group work | Faculty
Observation | | 3.0 | Values, autonomy, and | d responsibility | | | | 3.1 | Show citizenship with work individually or within a group to operate measurement instruments. | V1 | Discussions,
Demonstration,
Group work | Faculty | | 3.2 | Behave professionally
to enhance his
educational motivations
by reading and self-
learning. | V2 | Group work and class discussions | Observation | | ••• | | | | | #### **C.** Course Content | No | List of Topics | Contact Hours | |----|--|----------------------| | 1. | Introduction: Measurements and Instrumentations Fundamentals, and International System of Units (SI Units). | 2 | | 2. | Measurement: General Measurement System and Classifications of Measuring Instruments. Applications of Measurement System, and Instrument Performance Characteristics. | 4 | | 3. | Measurements Errors: Error, Error Range, Error Percentage, Relative Accuracy, Accuracy Percentage, Precision of a Given Measured Value, Sources of Errors, Classification of Static Errors, Curve Fitting. | 6 | | 4. | Resistance Measurement Techniques: Resistor Tolerance, Resistor Color Code, Power Rating of a Resistor. Temp rature Coefficient of a Resistor, Resistance. Measure next Techniques, Voltmeter-ammeter method, Ohmmeter, Bridge circuits. | 6 | | 5. | Cathode Ray Oscilloscope (CF.O). The sure me in or oltage, current, frequency, and phase by oscilloscope | 2 | | 6. | Semiconductor devices: Classification of metals, conductors, and semiconductors, Intrinsic and extrinsic semiconductors, p-n junction diode and its application as rectifier, Zener diode, Photodiode, Solar Cell, Transistor and its application. | 6 | |----|---|----| | 7. | Optical fiber Communication: Introduction to optical Fibers. Total Internal Reflection, Ray theory of light propagation in optical fibers, Modes of optical fiber, Attenuation, absorption and scattering losses in Fiber, Intra-modal dispersion. | 6 | | | Total | 32 | #### **Lab Experiments** | No | List of Lab Experiments | Contact
Hours | |----|--|------------------| | 1 | Introduction to electrical measurements | 2 | | 2 | Errors in measurements | 2 | | 3 | Measurement of Resistance using Ammeter and Voltmeter (Ohm's Law) | 3 | | 4 | Concept of Wheatstone Bridge (Explanation) | 2 | | 5 | Measurement of Resistance using Meter Bridge | 2 | | 6 | Resistor color code and Measurement of Resistance | 2 | | 7 | Review of Lab reports | 2 | | 8 | V-I Characteristics of PN Junction Diode | 2 | | 9 | Characteristics of Zener Diode | 2 | | 10 | Measurement of voltage by CRO | 2 | | 11 | Measurement of frequency by CRO | 3 | | 12 | Measurement of phase by CRO | 2 | | 13 | Solar Cell | 2 | | 14 | A review of all laboratory experiments and lab reports with a general discussion | 4 | | | Total | 32 | #### **D. Students Assessment Activities** | No | Assessment Activities * | Assessment | Percentage of Total | |----|-------------------------|-----------------------|---------------------| | | | timing | Assessment Score | | | | (in week no) | | | 1. | Quiz and Assignments, | 5th& 12 th | 10% | | 2. | Mid Exam | 10th | 30% | | 3. | Practical Exam | End of Term | 20% | | 4. | Final Exam | Lad of Term | 40% | ^{*}Assessment Activities (i.e., Written test, oral test, oral reseman, group project, essay, etc.). # E. Learning Resources and Facilities 1. References and Learning Resources | Essential References | Alan S Morris and Reza Langari, Measurement, and Instrumentation: Theory and Application, Second edition, Academic Press, 2015. ISBN-13: 978-0128008843 B. Northrop, Introduction to Instrumentation and measurements. 3rd Edition, CRC Press, 2017 ISBN-13: 978-1138071902 | |--------------------------|--| | Supportive References | The Measurement, Instrumentation, and Sensors. John G. Webster, Springer. Sensor Technology Handbook, by Jon S. Wilson | | Electronic Materials | Saudi Digital Library (SDL) http://lib.kku.edu.sa/ to search latest reference and textbooks of course | | Other Learning Materials | www.lms.kku.edu.sa to access lecture notes, textbook, lab
manual, announcements and all other material related to the
course will be made available via course's Blackboard page | ## 2. Required Facilities and equipment | Items | Resources | |---|--| | facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | A lecture room equipped with 60 seats,
Whiteboard, Tables & Chairs, and a Laboratory
accommodating 25 students | | Technology equipment (projector, smart board, software) | Data Show (Projectors) in the lecture room (Available) | | Other equipment (depending on the nature of the specialty) | None | ## F. Assessment of Course Quality | Assessment Areas/Issues | Assessor | Assessment Methods | |---|--|---| | Effectiveness of teaching | Students, Program Leaders | Direct (A questionnaire) | | Effectiveness of Students' assessment | Faculty, Peer Reviewers | Direct (Exams, quizzes, Homework) | | Quality of learning resources | Students, Programs Leaders | Direct/Indirect (Periodic checking of the quality of the devices and equipment) | | The extent to which CLOs have been achieved | Faculty, Quality and Development Committee | Indirect (Self-evaluation report) | | Other | 1 382 | | Assessors (Students, Faculty, Program Leaders, Feer Reviewers 2thing (specify) **Assessment Methods (Direct, Indirect)** ## **G. Specification Approval** | COUNCIL | Physics Department Council | |---------------|---| | /COMMITTEE | | | REFERENCE NO. | The meeting No. 6 for the academic year 1446, recommendation No. 3.6.46 | | DATE | 2/5/1446 H |