Course Specification — (Bachelor) **Course Title: Principles of Physics-2** Course Code: 1309 Phys-3 **Program: Bachelor for Computer Science** **Department: Physics** **College: Sciences** **Institution**: King Khalid University **Version**: **TP-153-2024** Last Revision Date: 20/01/2025 | Table of Contents | | |--|---| | A. General information about the course: | 3 | | B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment | | | Methods | 4 | | C. Course Content | 4 | | D. Students Assessment Activities | 5 | | E. Learning Resources and Facilities | 5 | | F. Assessment of Course Quality | 5 | | G. Specification Approval | 6 | #### A. General information about the course: #### 1. Course Identification | 1 C | redit hours: (3 | u) | | | | | |--|--|--|---------------------------------|-----------------------------|---------------------------------------|--| | | • | n <i>)</i> | | | | | | | +1) hrs | | | | | | | 2. C | ourse type | | | | | | | A. | ☑ University | ☐ College | ☐ Department | ☐ Track | ☐ Others | | | В. | □ Required | | ☐ Elect | | | | | 3. L | evel/year at wh | nich this course | is offered: (2 nd I | evel/ 1 st year) | | | | 4. C | ourse General I | Description: | | | | | | char
Mag | ges, Electric conc
netism. light and | luctivity, electric o
optics, Waves and | current (Ohm's lav
d Sound. | | ric field for point ergy, Magnets and | | | 5. Pi | re-requirements f | for this course (if an | y) : | | | | | 1308 | 1308Phys-3 | | | | | | | 6. Co-requisites for this course (if any): | | | | | | | | None | | | | | | | | | | | | | | | | 7. C | 7. Course Main Objective(s): | | | | | | | This | This course will introduce students to how to: | | | | | | | | \square Explain physical phenomena based on the general concepts of physics. | | | | | | | □ D | ☐ Define general principles of light, electricity and magnetism. | | | | | | | | ☐ Solve problems in light, optics, electricity, and magnetism. | | | | | | | | | | | | | | #### 2. Teaching mode (mark all that apply) | No | Mode of Instruction | Contact Hours | Percentage | | |----|--|--|------------|--| | 1 | Traditional classroom | 2h/week | 100% | | | 2 | E-learning . | | | | | 3 | Hybrid Traditional classroom E-learning | All de la constant | | | | 4 | Distance learning | | | | | | | | | | # **3. Contact Hours** (based on the academic semester) | No | Activity | Contact Hours | |-------|-------------------|---------------| | 1. | Lectures | 32 | | 2. | Laboratory/Studio | 32 | | 3. | Field | | | 4. | Tutorial | | | 5. | Others (specify) | | | Total | | 64 | # B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | Code | Course Learning Outcomes | Code of
CLOs
aligned
with
program | Teaching
Strategies | Assessment
Methods | | |------|---|---|--|--|--| | 1.0 | Knowledge and understanding | | | | | | 1.1 | Explain basic scientific facts, concepts, and principles related to the optics, electricity and magnetism. | K1 | Lectures, electronic lectures, group discussion. | quizzes, written
exams Mini project
reports Homework | | | 1.2 | Describe the applications related to electricity and magnetism. | K2 | | assignments | | | 2.0 | Skills | | | | | | 2.1 | Use the laws and mathematical methods of optics, waves, electricity and magnetism to solve problems. | S1 | Class lectures Group discussion the internet resources | Tutorials
Homework
assignments. | | | 2.2 | Illustrate some physical phenomena using concepts of magnetism and electricity. | S2 | | Research
Assignments | | | 2.3 | Choose the suitable concepts and laws of waves, electricity and magnetism in solving and explaining problems. | S1 | | | | | 3.0 | Values, autonomy, and responsi | <u>bility</u> | | | | | 3.1 | Practice self-learning skills | ¥2 | | Explain and | | | 3.2 | Participate information with bis colleagues during discussion sessions | ×1.1. € V5 | Self-study Scientific
lis ussion in group | discover an interactive discussion continuous observation | | **** #### **C. Course Content** | No | List of Topics | Contact Hours | |----|--|----------------------| | 1. | The Electric Charge and Electric Field Properties of electric charge, Charging objects by induction, Coulomb's Law, Electric field for point charges, Electric conductivity and electric energy. | 6 | | 2. | Electric Potential Potential Difference and electric potential Relation between electric field and potential, | 4 | | 3. | Direct Current and Resistance Electric current, voltage, Ohm's law, resistance and resistivity, series and parallel electric circuits, equations for resistors in series and parallel circuits, electric power, Kirchhoff's circuit laws electric current (Ohm's law) | 6 | | 4. | Magnets and Magnetism Permanent magnet, magnetic fields around electrical conductors, magnetic field lines, magnetic force acting on a charge moving in a magnetic field, magnetic torque, density of the magnetic field, mass spectrometer, | 6 | | 5. | Light and Optics Electromagnetic spectrum, specular reflection, Snell's law, optical physics and geometric optics | 4 | | 6. | Waves and Sound Transverse and longitudinal waves, sinusoidal waves (amplitude, wavelength), absorption, reflection, refraction, interference, polarization and Doppler Effect | 6 | | | Total | 32 | # **Practical Work** | No | List of Topics | Contact Hours | |-----|---|---------------| | 2. | Electrics measurements | 3 | | 2. | Coulomb's Law | 3 | | 3. | The Electric Field Mapping | 3 | | 4. | Construction of Voltmeter | 3 | | 5. | Combinations of Capacitors | 4 | | 6. | The charge and discharge of a capacitor | 4 | | 7. | Ohm's Law | 3 | | 8. | Resistors in Series and Parallel | 3 | | 9. | Magnetic Field, Biot Savart Law | 3 | | 10. | Standing waves | 3 | | | Total | 32 | #### **D. Students Assessment Activities** | No | Assessment Activities * | Assessment
timing
(in week no) | Percentage of Total
Assessment Score | |----|------------------------------|---|---| | 1. | Homework + class short exams | 5 th week | 5% | | 2. | Mid-Term | 7 th week | 30% | | 3. | Computerized short exams | 6 th and 11 th week | 5% | | 4. | Lab exam | 16 th week | 20% | | 5. | Final examination | At the end of the semester | 40% | ^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.). # **E. Learning Resources and Facilities** #### 1. References and Learning Resources | Essential References | Kyle, Ph.d. Kirkland, Electricity and magnetism, 1st edition, (2007), Publisher: Facts on File. ISBN 13: 9780816061129 Physics for Scientists and Engineers by Raymond A. Serway and John W. Jewett. ISBN 0534408427 Thomson Brooks/Cole © 2004; 6th Edition | |--------------------------|--| | Supportive References | Purcell E.M., Morin D.J., Electricity and Magnetism, 3ed Edition (2013),
Cambridge University Press. ISBN 13:78-1-107-01402-2 | | Electronic Materials | Selected electronic lectures in electricity and magnetism. | | Other Learning Materials | No further materials are recommended | # 2. Required Facilities and equipment | Items | Resources | |---|--| | facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | A classroom with its facilities that accommodates forty students | | Technology equipment (projector, smart board, software) | Data show, laptop, smart board and internet. | | Other equipment (depending on the nature of the specialty) | | # F. Assessment of Course Quality | Assessment Areas/Issues | ssessor | Assessment Methods | |---------------------------|-----------|--------------------| | Effectiveness of teaching | Grader ts | Indirect method | | | | | The state of s | Assessment Areas/Issues | Assessor | Assessment Methods | |---|--|----------------------------| | Effectiveness of Students assessment | Course instructor | Direct method | | Ovelity of learning resources | Students | Indirect method | | Quality of learning resources | Program Leaders Faculty | Direct and indirect method | | The extent to which CLOs have been achieved | Course instructor
Program Leaders Faculty | Direct and indirect method | | Other | | | Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify) Assessment Methods (Direct, Indirect) # **G. Specification Approval** | COUNCIL/COMMITTEE | Physics Department Council | |-------------------|---| | REFERENCE NO. | The meeting No. 6 for the academic year 1446, the recommendation No. 3.6.46 | | DATE | 2/5/1446 H |