

Course Specification

— (Bachelor)

Course Title: Physics for Health Science

Course Code: 0303Phys

Program: Health path

Department: Physics

College: Science

Institution: King Khalid University

Version: **TP-153** (2024)

Last Revision Date: 10/1/2025

Table of Contents	
A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Asse Methods	essment 4
C. Course Content	4
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	5
G. Specification Approval	6

A. General information about the course:

1. Co	ourse Identifica	tion			
1. 0	Credit hours: (2-	+1= 3hrs)			
2 H	rs (Theory) + 11	Hrs (Practical)			
2. 0	Course type				
A.	☑ University	☐ College	☐ Department	□ Track	☐ Others
В.	⊠ Required		☐ Elect	_	
			e is offered: (2 nd /I	First Year)	
4. C	Course General	Description:			
stu	<u>-</u>	rates both theory	tory physics course and laboratory exp	_	
La Sta Wo	its, dimensions, and ws of motion attics ork, energy, and po	ower	. ,		
No Wa Op Mo	astic and thermal pon-viscous and viscous and viscous and viscous and viscous at least physics and an arrhysics		iais		
Pra Th	Nuclear physics Practical Part The practical part of the course provides first-hand experience that illustrates the major concepts discussed in the theory classes.				
5. P	re-requiremen	ts for this cour	se (if any):		
N/A					
6. C	Co-requisites fo	r this course (if a	iny):		
N/A			S Jadi N		
7. 0	Course Main Ob	jective(s): -			

Upon successful completion of this course, students will be able to:

- Know the basic principles of physical measurements, conversion of units, and dimensional analysis.
- Understand the difference between scalar and vector quantities and all vector algebra operations.
- Describe Newton's laws of motion and their applications.
- Understand the basic principles of statics, torque, center of gravity.
- Interpret work, kinetic energy, potential energy, the work-energy theorem, the conservation of energy principle, their applications, and power.
- Determine the elastic properties of materials.
- Know the thermal properties of matter and heat transfer.
- Study the mechanics of non-viscous fluids, fluid pressure, the equation of continuity, and Bernoulli's equation.
- Know the mechanics of viscous fluids and Poiseuille's law.
- Describe wave motion.
- Study mirrors, lenses, and imaging.
- Understand nuclear physics, radiation physics.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	16x2hrs/week=32	100%
2	E-learning	0	0
3	HybridTraditional classroomE-learning	0	0
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	32
2.	Laboratory/Studio	20
3.	Field .	0
4.	Tutorial	0
5.	Others (specify)	0
Total		52hr

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	Demonstrate a thorough knowledge of the fundamental theories and principles of medical physics	K 1	Providing all lectures in a classroom with an assistance of projecting devices	Written exams (including Quizzes)
1.2	Recognize the fundamentals of physics, including the definitions of force, torque, work, energy, power, pressure, stress, strain, and specific heat.	K2	Providing all lectures in a classroom with an assistance of projecting devices	Written exams (including Quizzes)
1.3	Outline the applications of Physics in Medicine	К3	Providing all lectures in a classroom with an assistance of projecting devices	Written exams (including Quizzes)
2.0	Skills			
2.1	To practice critical thinking and efficient problem-solving skills in Physics	S1	Classroom Lectures and Tutorials	Quiz and Exams (Mid and Final)
2.2	Concepts of work and energy and their estimations	S2	Classroom Lectures and Tutorials	Quiz and Exams (Mid and Final)
2.3	Numerical problems based on equations, and solving them	S 3	Classroom Lectures and Tutorials	Quiz and Exams (Mid and Final)
2.4	To apply the concept of fluid flow to solve problems in medicine	S4	Classroom Lectures and Tutorials	Quiz and Exams (Mid and Final)
3.0	Values, autonomy, and	d responsibile	la.	
3.1	To demonstrate social responsibility and ethical principles	VI A	Classroom Lectures	Explain and Discover an interactive discussion
3.2	To show independency in	V2	Classroom Lectures	Explain and Discover

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
	solving simple problems			an interactive discussion
3.3	To understand the risks and benefits of radiation in medicine, from a medical physics perspective.	V3	Classroom Lectures	Explain and Discover an interactive discussion

C. Course Content

No	List of Topics	Contact Hours
1	Measurements, Units Dimensions and Vectors Physical quantities including base and derived quantities, vectors and scalars, vector multiplication and resultant vector (Numerical Examples and Problems)	4
2	Newton's Laws of Motion (Numerical solution of Examples and Problems)	2
3	Statics Conditions of equilibrium, calculation of torque Static Physics and (Numerical solution of Examples and Problems)	5
4	Work, Energy and Power Definitions of work and energy, work-energy principle, types of energy, Power (Numerical solution of Examples and Problems)	5
5	Elastic Properties of Materials Stress, strain and Young's Modulus, stress-strain graph (Numerical solution of Examples and Problems)	2
6	Thermal Properties of Materials Linear thermal expansion of materials including length, area and volume expansions (Numerical solution of Examples and Problems)	2
7	The Mechanics of Viscous & Non-Viscous Fluids Viscosity, Types of fluids, the equation of continuity, Bernoulli's equation, principles of blood pressure measurements, Fluid flow types (Numerical solution of Examples and Problems)	5
8	The Description of Wave Motion Types of waves, wave parameters and velocity of waves (Numerical solution of Examples and Problems)	2
9	Geometrical Optics, Mirrors, Lenses and Images Mirrors, lenses and image formation. Defects of eyes (Numerical solution of Examples and Froblems)	3
10	Nuclear and Radiation Pn, ics Isotopes, types of radiations nalf-life of nucleot des physical and biological half-life (Numerica, solution of examples and Proportion)	2
	Tola	32
	→ 1.9 /	

No	List of Practical's	Contact Hours
1	Measurement of errors by Vernier calipers and micrometer	2
2	Specific heat capacity of solid by the method of mixture	2
3	Mechanical Equivalent of heat through an electrical method	2
4	Surface tension of liquids using the direct pull method. Effect of temperature variation on surface tension.	2
5	Study the effect of light refraction through glass and liquid and determination of their refractive indices.	2
6	Coefficient of viscosity of a viscous liquid by the Stokes method	2
7	Determination of the force constant of a helical spring and the acceleration due to gravity using the spring-mass system	2
8	Correction of visual defects (myopia and hypermetropia) in the eye. Comparison of experimental results with theoretical predictions.	2
9	Observation of the interference pattern from a Young's double slit experiment and estimation of the resolving power of the human eye.	2
10	Study the characteristic curve of a G.M. tube. Measure the attenuation coefficient for metals. Relate the attenuation coefficient to the atomic number.	2
	Total	20

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quiz and Assignments	5th& 12 th	10%
2.	Mid Exam	10th	30%
3.	Practical Exam	End of Term	20%
4.	Final Exam	End of Term	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References

Physics" Written by Joseph W. KANE and Morton M. STERNHEIM. Third Edition. JOHN WILEY & SONS,

Inc. ISBN: 0-471 63845 5

Supportive References

University Favore Medels and Applications, William P. Crummett

Arthur B. Western,

	ISBN- 10: 0697111997 ISBN-13: 978-0697111999, William C Brown Pub (January 17, 1994). Physics, Volume 1, Robert Resnick, David Halliday, Kenneth S. Krane, 5th Edition, Wiley; 2001. ISBN-13: 978-0471320579, ISBN- 10: 0471320579
Electronic Materials	Web Sites, www.lms.kku.edu.sa to access lecture notes, lab manual, announcements related to the course etc.
Other Learning Materials	No further materials are recommended.

2. Required Facilities and equipment

Items	Resources
facilities	A classroom with its facilities that accommodates
(Classrooms, laboratories, exhibition rooms,	forty students
simulation rooms, etc.)	
Technology equipment	Data show, laptop, smart board and internet
(projector, smart board, software)	
Other equipment	
(depending on the nature of the specialty)	

Φ. Ασσεσσμεντ οφ Χουρσε Θυαλιτψ

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Periodic self- assessment Students	Direct
Effectiveness of Students assessment	Faculty	Indirect
Quality of learning resources	Peer Reviewers	Direct
The extent to which CLOs have been achieved	Committee of Development and Quality	Direct & Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Physics depertment Council
REFERENCE NO.	The meeting No. 11 the act dering year 1444-1445, the recommendation No. 45/46
DATE	1446 H

